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I. INTRODUCTION

Recently, extensive studies on the nonlinear behav-
ior of low-frequency waves in magnetized plasmas have
been carried out [1-6]. It has been shown that at fi-
nite amplitudes these waves can self-organize into local-
ized vortexlike structures through nonlinear interactions
[6-10]. The structures, whose motion is perpendicular to
the external magnetic field, have been invoked to explain
the nearly stationary localized electromagnetic zones ob-
served in the ionosphere and magnetosphere of the Earth
[11]. Moreover, they could play an important role in the
anomalous transport [7,12-14] near the edges of fusion
plasmas, since they can trap the plasma particles in clus-
ters and convectively move them across the magnetic field
lines. It is of interest to point out that mathematically
similar (they depend on the same vector nonlinearity)
vortices can also appear in uncharged fluids as modons
[12,13].

Most earlier studies [3-7] on electromagnetic vortex
structures were carried out in the local, or plane, geom-
etry and for current-free plasmas. Recently, Chen and
Liu [15] investigated nonlinear shear Alfvén waves in a
current-carrying homogeneous low-temperature plasma.
They showed that the field-aligned external current can
considerably affect the properties of the vortices. For low-
B (B € me/m; < 1) and low-current (with the steady-
state electron flow speed much less than the Alfvén
speed) plasmas, the existence domain for the propagation
velocity of the vortices was found to be larger than that
in the current-free case. In this paper, we extend the in-
vestigation of Ref. [15] to include nonlocal effects. In par-
ticular, we are interested in vortices having curved tra-
jectories in a low-temperature current-carrying plasma.
An electromagnetic vortex with both symmetric and an-
tisymmetric parts is shown to exist.

This paper is organized as follows. In Sec. II, we de-
rive the equations describing the nonlinear shear Alfvén

“Present address: Institut fiir Theoretische Physik, Ruhr-
Universitdt Bochum, D-44780 Bochum, Germany.

1063-651X/94/49(4)/3335(5)/$06.00 49

waves in a low- current-carrying plasma in the cylindri-
cal geometry. In Sec. III, we obtain a vortex-like qua-
sistationary solution describing an asymmetrical vortex
revolving around the cylinder axis in a circular orbit. In
the Conclusion, a discussion of the properties of this vor-
tex and possible applications of the latter in space and
fusion plasmas are given.

II. THE EVOLUTION EQUATIONS

We assume that the steady-state plasma is homoge-
neous and imbedded in a uniform magnetic field By =
Bye., where e, is the unit vector in the z direction. The
electrons are assumed to move along By at a constant
speed Vye, relative to the ions.

For a low- (8 < 1) plasma, we can ignore the com-
pressional part of the perturbed magnetic field. Thus,
the perturbed electromagnetic fields of the shear Alfvén
waves can be expressed as

E = —V¢ - %atAzez, (1)

BJ_ = VAz X e, (2)

where ¢ and A, are the scalar potential and the parallel
component of the vector potential, respectively.

In the drift approximation (8; < w.;, where we; =
eBo/cm; is the ion gyrofrequency), the perpendicular (to
the external magnetic field) fluid velocities of the ions and
electrons are given by

c VoB, V..B,
V. =Se xV Ye=B1
L= g, X Vet =+ g (3)
and
il = Boez
(64 C
B [at + 5olex Vo). v] Ve (4)

The first term on the right-hand side of (3) is the elec-
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tric drift, the second describes the coupling of the ex-
ternal current and the perturbed magnetic field, and the
third comes from the nonlinear coupling of the parallel
motion of the electrons and the perturbed magnetic field.
The electron polarization drift has been neglected.

From the parallel component of the Ampere’s law, ne-
glecting the parallel motion of the ions as well as the dis-
placement current, one obtains [15] a relation between
the parallel electron velocity V., and the parallel vector
potential A,

c

Ve: = AA,, 5
4meng (5)

where A, = 8%/0r% +r=19/0r + r=20%/9862, and n, is
the unperturbed density of the plasma.

We shall also need the charge conservation equation in
the quasineutral limit and the parallel electron momen-
tum equation [3,6,15], namely

V.-J, +8,J, =0, (6)
and

at‘/ez + (VO + Vez)az‘/ez + VeL : VVez

=B, - S (V. xBy)e, (7)
m mc

where we have assumed that the plasma is of low temper-
ature such that 8 <« m./m;. The latter relation can be
written as p, < A,, where p, = ¢5/we; (With ¢, the ion
acoustic speed) is the ion Larmor radius and A, = ¢/wpe
is the collisionless electron skin depth. Thus, the iner-
tial force dominates over the pressure force in the paral-
lel electron momentum balance [3,4,6], and the problem
under consideration does not explicitly involve the per-
turbed electron density.

Substituting (1)—(5) into (6) and (7), and noting that
Ve -V > V,.,0,, we can obtain the following coupled
system of nonlinear evolution equations governing finite
amplitude shear Alfvén waves:

[0, + (e, x V&) - V] Ad

+[8, — (e, x V¥)- V]AT =0 (8)

and

8,0 — [0, + (e, x V) - V] AT 48, — (e, x VT) - V] &

Vo0, — (e, x V) - V] AT = 0. (9)

In the above, we have normalized the variables as fol-
lows: e¢/Te— B, eV4A,/cTe— ¥, weit— t, cz/wpi— 2,
r/A, = 1, Vo/c = V,, where V4 = (Bé/41rn0mi)1/2
is the Alfvén speed. In the small amplitude limit, we
can obtain from (8) and (9) the linear dispersion rela-
tion w = k, V4 /(1 + k2 A2)1/2 for Alfvén waves in a low-
B (8 <€ me/m;) plasma [3,4]. On the other hand, for
Vo — 0, the above system reduces to that for a current-

free plasma [6]. Note that the equilibrium electron flow
causes not only a linear shift of the perturbation current,
but also a nonlinear cross-field shift of the latter.

III. LOCALIZED VORTEX SOLUTIONS

In order to study quasistationary vortex structures in
the cylindrical geometry, we assume that ® and ¥ are
functions of r and © = 0 —Qt+az, where Q is the angular
speed at which the structure executes a circular orbit at
a distance R from the axis, and « is a constant related to
the parallel (to Bo) characteristic length (e.g., k) of the
structure. That is, we are interested in a vortex structure
which is infinite and that has a wavelength 27/a in the
z direction. In this case, (8) and (9) can be written as

[ci, A«I)} - [\i A'Il] =0 (10)
and
[6, AT — @] A [\T: A\If} =0, (11)

where we have introduced for convenience the temporary
notations & = & — %Qrz and ¥ = ¥ — %arz. The Pois-
son’s brackets [f, g] are defined by

_1[8f0g Ofdyg
[fs g]=;[552—5£“3r]~

According to the properties of the Poisson brackets,
(10) and (11) are satisfied if

A = f(®) - C ¥ (12)
and
ATV = C13 + (1 - C1Vo)9, (13)

where C is a constant to be determined and f(®) is an

arbitrary continuous function of ¥. For simplicity, we
shall use a linear dependence, namely,

f(®) = Co + C, 0,

where Cy are C, are constants to be determined.

In order to investigate quasistationary structures hav-
ing curved trajectories, we now transform the coordi-
nate system (r, ©) to a new one (7', 8') whose origin
is at the center (located at r = R from the axis of the
original cylindrical coordinate system) of the structure
[16,17]. Here, 0’ is the angle between the tangent of
the trajectory of the center of the structure and the
radius vector of the point being considered. That is,
r?2 = ' + 2Rr'sin@ + R2. In contrast to the earlier
studies on vortices in rotating plasmas [5,6], we have not
made any localization approximation here, so that our
results are also valid for vortices with sizes comparable
to R. Note that when generalized, R represents the local
radius of curvature of the vortex trajectory.
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Dividing the new polar plane (7', §') into an inner (r' <
a) and an outer (r' > a) region, we can rewrite (12) and
(13) as

Ad = C, [<I> - %Q(r'z + 2Rr'sin6’ + Rz)]
-C, [\Il - %cx(r’2 + 2Rr'sin6’ + Rz)] +Co (14)
and
AT =C, [cp ~ -;-n(r"" + 2Rr'sin6’ + Rz)]

+(1=VoCy) [\Il - —;-az('r'2 + 2Rr'sin6’ + Rz)] .
(15)

For simplicity, we shall in the following omit the prime
on the new coordinates r’ and ¢'. _ _

From the localization conditions ® — 0 and ¥ — 0 as
r — 00, the constants Cy, C;, and C> in the outer region
are determined to be

CO,out = 0; (16)

J

A? A2

1
A% — [cz,in ; —] A+ L [Cz ot i] 2 Lo

) “2

where p? = A\2Q?/a? and

2#200,in
Qa2(1 + MZCZ’in) )
Assuming that the solutions of (19) and (20) are of

the form ®(r,0) = ®¢(r) + ®1(r)sinf, we can find the
solutions [16]

Boui(r,0) = %Qaz [dlKo(kr)

+§(@K¢my+%>mw} (21)
a
and
1 r\2 b\ 2
Pin(r,0) = EQaz{glJo(PT) + g2lo(qr) + (;) + (;1)
R 2 .
+ [93-’1(1”") +g4l1(qr) + ;T] smG}, (22)
where
2 4()‘202,in + 1) 12
=" 2" 4 23
bl I‘zCZ,in + a, ( )
_J
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C1,0u 17

Lot 0 _aV, (17)

and

2
—Q

ot = ———————. 18

Ca,ou Q2 — aVp) (18)

Clearly, the regularity condition of ¢ and A, in the
inner region does not require explicit constraints on Co,
Ci, and C;. For definiteness, we set Cy iy = Ci out, and
leave Co in and Cs i, as constant parameters to be deter-
mined by the condition requiring the continuity of the
perturbed quantities and their derivatives at the bound-
ary of the inner and outer regions.

Substituting (16)—(18) into (14) and (15), and elim-
inating ¥, one can obtain the equation governing the
perturbed potential ® in the outer region (r > a)

1 o?
2 —
AQ—E(I—ﬁi)Aé_O, (19)
where A2 = (2 — aVp)/Q.

Similarly, we can also get the equation for @ in the
inner region (r < a)

1 1 2 2R
[t ] [0+ Brwmoe] <0
[
1 1
kz—F—E>O, (24)
1 1\ 4 ]
p2 = 5{ (C’z,m /\2) - m]
m
1
_ (cm - F) } (25)
and
1 1\ 4 17
¢ = 5{ (CZ'"‘ ,\2) - ﬁ—z]
m
1
+{ C2in — ) ( (26)

Inserting (20) and (21) into (14), we can obtain the
expressions for the potential ¥ in the inner and the outer
regions

1 R
Uout(r,0) = Eoza2 {(1 + u?k?)d; Ko(kr) + > [(1 + u?k*)do K (kr) + i—:’] sin0} (27)
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and

1 2 2
Yin(r,6) = Eaaz{—(cz’in + ) g1do(pr) — (Cz,in — ¢*)1g2lo(qr) + (Z) * <—)

where d; (i = 1,2,3) and g; (j = 1,2,3,4) are constants
to be determined, and

b2 = u? (4 - C’z,inbf) + R? (1+ Cz,inﬂz) — 244%Co,in /9.
(29)

Recall that r and 6 here are the local coordinates with
the origin at the center of the vortex. From (20), (21),
(27), and (28), it is clear that solutions for the present
problem are considerably more complicated than that of
the straight-line orbit case. In fact, they consist of both
antisymmetric and symmetric parts.

Continuity of @, 8,9, A®, ¥, and J,¥ at the bound-

CHEN YINHUA ANDM. Y. YU 49

bo
a
E —(C, - 2y 2 _ 2y, 2 2ry . 0
+ a ( 2,m+p )/1' 93J1(P7') (CZ,m q )II' 9411(47‘) + a s ) (28)
[
where
B akKy(ka) _ apJi (pa) _ aql(ga)
Ko(ka) ’ Jo(pa) ’ Iy(ga) ’
M_4—q2(a2+bf) _4—k%*(a® +b3)
- a2(k2—q2) ’ - a2(k2_q2) ’
L 4+pia®+8)
- az(k2 _qz) ’
and
2 2 2 2
p°+gq Ptk
A‘J:kz_qz kz_q2F+G'

ary of the inner and out regions yields the coefficients d;
and g;, as well as equations determining the inner-region
parameters Co in, C2,in, and the radius a which represents
the characteristic size of the vortex.

The three coefficients associated with the symmetric

The four coefficients corresponding to the antisymmet-
ric part of the solution are

: 4 pPig? P2+ ¢?
part of the solution are dy = ~RKi(ka) ka) A ds=2a|1+2 A | (33)
1 ka p? +q? ]
d, = — EM + GN)|,
' Ko(ka)Ao | Ki(ka) 0 k2 — q2( ) 4 .
S = 34
(30) s Ji(pa)A’ 94 I (ga)A’ (34)
) where
g1 = —Jo(pa)Ao (EM + GN), (31) A [asz(ka) ~ 2] p? + ¢? apJa(pa)  aqlz(qa) '
K, (ka) k2 J1(pa) I,(qa)
_ 1 _ The equations for the parameters Cp in, C2,in, and the
92 = Iy(ga)Ao (FN - EL), (32) vortex radius a are
ak p? + k2
1+ “2k2)K1(ka) MAg + |(Caim + PP — (1 + uzkz)kz 7 (EM + GN)
b\ 2
+ (Caun — ¢ 2(FN — BL) - [1 +(%2) } Ao =0, (35)
. 2y 27 apJ2(pa) o 2),2 aglz(qa) _2(02 2y akK3z(ka) 36
[1 + (C2,ln + Y4 )H ] J1 (pa) + [1 + (C2,ln q ))u‘ ] Il (qa) (p + q ) Kl (ka) - 07 ( )

and

14 (Cajin + k* + P?)U2)(EM + GN)F — [1 + (Cain + k* — ¢*)p?)(FN — EL)G — 2p%k* Ao = 0. (37)
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The domain of existence for the angular velocity of the
vortex is determined by the relation

1 1

a0 (38)

which can be rewritten as

("QTQE?O) (1 - S—Z) > 0. (39)

Thus, vortices exist if Vo < @/a and 1 < |Q/a] as
well as when Vy > Q/a and 1 > |Q/a|. The latter con-
dition allows for vortices with |Q2/a| near zero, a situa-
tion impossible in the absence of Vy. Since the lowest-
order linear frequency w for the shear Alfvén waves sat-
isfies w? = a?, or w = 1k V4 in terms of the original
(dimensional) parameters, we see that these conditions
require Vo < Q/k; and |Q| > |k;|Va, and Vo > Q/k
and |Q| < |k |Vy4, respectively. That is, the rotation fre-
quency of the vortex must be super-Alfvénic if Vo < Q/k)
and sub-Alfvénic if Vo > Q/kj. It can also be verified
that the perturbed magnetic field B = VA, x e, and
the parallel current density j; = —AA_/4m are continu-
ous at r = a.

IV. CONCLUSION

In this paper, quasistationary electromagnetic struc-
tures resulting from the nonlinear interaction of shear
Alfvén waves in low-8 (8 <« m./m;) current-carrying
plasmas have been investigated. We derived a system of
nonlinear equations describing the interaction of shear
Alfvén waves in the cylindrical configuration. Quasi-
stationary localized (in the plane perpendicular to the
external magnetic field) asymmetrical vortex-pair solu-
tions with a spatially periodic structure parallel to By
are shown to exist. Such vortices can represent a self-
organized state of the nonlinear waves. That is, finite am-
plitude shear Alfvén waves in current-carrying plasmas
can self-organize through nonlinear mode-mode coupling
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to form such vortex structures which can move in sharply
curved (circular) orbits. The solution involves symmet-
ric as well as antisymmetric parts [16]. In contrast to the
well-known purely antisymmetric local dipole-vortex so-
lution, the vortex here consists of a monopole as well as
a dipole, resulting in a vortex pair of unequal intensities.
It is also of interest to point out that the inner-region pa-
rameters Cp jp and Cs i, as well as the vortex radius a are
determined simultaneously by the continuity condition of
the perturbed variables (and their derivatives) at r = a,
so that there are only two free parameters, for example,
a and Q. Finally, we note that when R — 0, the vortex
found here degenerates into a monopole vortex, while in
the limit R > a it reduces to a dipole vortex [15].

The present work generalizes the earlier investigations
[5,6,15] which involve vortices with straight-line or nearly
straight-line orbits. The results here may be applicable in
laboratory and space plasmas where self-organized struc-
tures with strongly curved trajectories (which, for exam-
ple, can appear during vortex-vortex interactions) are in-
volved. The collective dynamics and interaction of these
vortices may be important in the study of the turbulent
magnetized plasma [3,14,17,18]. In fact, many numerical
simulations involving vortex generation and interaction
in fluids and plasmas seem to indicate the frequent ex-
istence of nonsymmetrical vortex pairs [12-14]. The re-
sults here can also be useful in interpreting the localized
stationary electromagnetic structures in the ionosphere
and magnetosphere [11]. On the other hand, for appli-
cation in higher temperature plasmas, one must include
finite gyroradius effects, which can considerably change
the properties of the present solutions.
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